'Active' sugar transport in eukaryotes.

نویسندگان

  • E M Wright
  • D D Loo
  • M Panayotova-Heiermann
  • M P Lostao
  • B H Hirayama
  • B Mackenzie
  • K Boorer
  • G Zampighi
چکیده

Sugar transporters in prokaryotes and eukaryotes belong to a large family of membrane proteins containing 12 transmembrane alpha-helices. They are divided into two classes: one facilitative (uniporters) and the other concentrative (cotransporters or symporters). The concentrative transporters are energised by either H+ or Na+ gradients, which are generated and maintained by ion pumps. The facilitative and H(+)-driven sugar transporters belong to a gene family with a distinctive secondary structure profile. The Na(+)-driven transporters belong to a separate, small gene family with no homology at either the primary or secondary structural levels. It is likely that the Na(+)- and H(+)-driven sugar cotransporters share common transport mechanisms. To explore these mechanisms, we have expressed cloned eukaryote Na+/sugar cotransporters (SGLT) in Xenopus laevis oocytes and measured the kinetics of sugar transport using two-electrode voltage-clamp techniques. For SGLT1, we have developed a six-state ordered model that accounts for the experimental data. To test the model we have carried out the following experiments. (i) We measured pre-steady-state kinetics of SGLT1 using voltage-jump techniques. In the absence of sugar, SGLT1 exhibits transient carrier currents that reflect voltage-dependent conformational changes of the protein. Time constants for the carrier currents give estimates of rate constants for the conformational changes, and the charge movements, integrals of the transient currents, give estimates of the number and valence of SGLT1 proteins in the plasma membrane. Ultrastructural studies have confirmed these estimates of SGLT1 density. (ii) We have perturbed the kinetics of the cotransporter by site-directed mutagenesis of selected residues.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Golgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters.

The synthesis of glycoconjugates within the secretory pathway of eukaryotes requires the provision of lumenal nucleotide-sugar substrates. This is particularly important for eukaryotic microbes such as Leishmania because they must synthesize considerable amounts of extracellular and cell surface glycoconjugates that play significant roles in the infectious cycle. Here we used properly oriented ...

متن کامل

Optimal concentration for sugar transport in plants.

Vascular plants transport energy in the form of sugars from the leaves where they are produced to sites of active growth. The mass flow of sugars through the phloem vascular system is determined by the sap flow rate and the sugar concentration. If the concentration is low, little energy is transferred from source to sink. If it is too high, sap viscosity impedes flow. An interesting question is...

متن کامل

Ion Transport in Isolated Rabbit

The addition of actively transported sugars to the solution bathing the mucosal surface of an in vitro preparation of distal rabbit ileum results in a rapid increase in the transmural potential difference, the short-circuit current, and the rate of active Na transport from mucosa to scrosa. These effects arc dependent upon the active transport of the sugar per se and arc independent of the meta...

متن کامل

Alkali Cation/Sucrose Co-transport in the Root Sink of Sugar Beet.

The mechanism of sucrose transport into the vacuole of root parenchyma cells of sugar beet was investigated using discs of intact tissue. Active sucrose uptake was evident only at the tonoplast. Sucrose caused a transient 8.3 millivolts depolarization of the membrane potential, suggesting an ion co-transport mechanism. Sucrose also stimulated net proton efflux. Active (net) uptake of sucrose wa...

متن کامل

Mouse SGLT3a generates proton-activated currents but does not transport sugar.

Sodium-glucose cotransporters (SGLTs) are secondary active transporters belonging to the SLC5 gene family. SGLT1, a well-characterized member of this family, electrogenically transports glucose and galactose. Human SGLT3 (hSGLT3), despite sharing a high amino acid identity with human SGLT1 (hSGLT1), does not transport sugar, although functions as a sugar sensor. In contrast to humans, two diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 196  شماره 

صفحات  -

تاریخ انتشار 1994